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Constants and Variables

For easy reference, the significance of important variables and constants appears

here. The mass of each vertex, the force constant for each spring, and the equilibrium

length of each spring is set to 1 for all of the systems considered. Whenever possible,

the notation used here is preserved in the Mathematica code which appears in the

appendix.

Notation used in both methods

m −→ mass of each vertex −→1
k −→ force constant of each spring −→1
d −→ equilibrium length of each spring −→1

N −→ the number of vertices in the system

Notation used in the analytic method

R −→ the set of vectors which designate the equilibrium configuration of a system
each entry takes the form Ri = (xi, yi, zi)
where i counts from 0 to N − 1

r −→ the set of vectors which designate the displaced position of each vertex
each entry takes the form ri = (q(3i), q(3i+1), q(3i+2))
where i counts from 0 to N − 1

V −→ the potential energy of the system as a function of r.

H −→ the Hessian matrix: ∂2V
∂qj∂qk

∣

∣

∣

0

ωr −→ the normal frequency corresponding to the
square root of the rth eigenvalue of H

ar −→ the matching eigenvector of H



Notation used in the computational method

h −→ integration time step
tf −→ target integration time

n −→ the number of steps made in the integration (n =
tf
h
)

r −→ the set of vectors which designate the position of each vertex
each entry takes the form ri = (xi, yi, zi)

v −→ the set of velocity vectors for each vertex
each entry takes the form vi = (vxi, vyi, vzi))

A clarification:

The combination of analytic and computational approaches makes the notation

tricky. Rather than introducing another variable, we let r assume two different

roles, one for each method. Because the two methods are not treated concurrently,

the inconvenience caused by this overloading should be minimal.



Abstract

Normal modes in a triangle, tetrahedron, cube, and a mass-spring model of

the clathrin cage are analyzed using two complementary approaches: classical La-

grangian mechanics and a fourth-order Runge-Kutta integration method. The two

approaches yield identical results in the small oscillation regime and differ when non-

linearities are introduced by larger amplitude oscillation. The cube and the clathrin

cage exhibit semi-rigid behavior, and an index for characterizing their flexibility is

introduced by considering the number of zero-frequency modes which correspond

with deformations rather than simply translation and rotation. A frequency spec-

trum of the clathrin cage is obtained but the numerical solution suggests the results

may be problematic.
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Chapter 1

Introduction

Thanks to the ever increasing power and availability of personal computers, com-

putational physics has become a common tool used to explore the behavior of com-

plex systems. One advantage of this approach is that it allows the experimenter

to control the physical forces involved, the initial conditions, and details of the

system’s dynamics without the restrictions often imposed by an analogous mathe-

matical treatment. When combined with effective visualization and data analysis

techniques, numerical simulations provide insight into problems which cannot be

easily considered algebraically. Equally important, however, is the computational

method’s ability to explore the limits of a known algebraic solution. One class of

problems for which algebraic and numerical solutions can be found and compared

are those involving coupled oscillations.

The classical treatment of coupled oscillators was introduced by Bernoulli in

1753, and was later refined by Lagrange in the 1760’s. Although it is robust and

thoroughly studied, this approach is only applicable to very small vibrations. A

parallel treatment of these systems using computational methods avoids such a

restriction, and is therefore useful in assessing the classical solutions.

In order to appreciate why coupled oscillations can be computationally favorable,

consider the problem of N bodies influencing each other via gravity. Computing the
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net force on each body requires N − 1 calculations, so computing the net force on

all bodies requires (N − 1)2 calculations. A simulation of 1000 bodies will require

106 calculations for each time step. After the net force for each body is known, a

variety of integration methods exist that increment the time forward with varying

degrees of precision. For a typical time step of .01 seconds, a ten second study of

the system requires 109 calculations.

Now consider the example of N atoms in a crystal lattice, where we approximate

the quantum mechanical forces between neighboring atoms as anharmonic springs.

Computing the net force on one atom requires 6 calculations because it is only af-

fected by its nearest-neighbors. Computing the net force on all the atoms requires

6N calculations. For the same time step of .01 seconds, a ten second study requires

only 6×106 calculations. The systems analyzed in the following chapters are compu-

tationally managable because of the same nearest-neighbor simplification. The most

complicated one requires about 10 minutes of computation time per simulation.

Confident that the mathematical and computational tools exist to thoroughly

analyze vibrational problems, this thesis examines one such system, the clathrin

cage. This complex protein provides a mechanism for released neurotransmitters

to be collected back within the neuron for future use. Researchers have been able

to isolate many of the key steps in the process, but there remain several mysteries.

Understanding the protein’s vibrational characteristics may provide useful insight

into some of these details. Although biologically complex, the structure also engages

our interest from a geometric, and consequently mathematical perspective. When

considered as a system of point masses connected by springs, it turns out that the

clathrin cage exhibits semi-rigid characteristics. The meaning of this will become

clear in later chapters, and it conveniently turns out that these semi-rigid systems

are ideal for the combined analytic/computational approach proposed.



Chapter 2

The Clathrin Cage

Clathrin is crucial for the transmission of materials into and out of cells throughout

the body. From concentrating nutrients in the human placenta to the release of neu-

rotransmitters in the brain, this protein is indispensable. Its role in material uptake

(receptor-mediated-endocytosis) has only been fully grasped in the last decade, and

several details of this complex process are still unknown. What follows is a summary

of these steps, a description of why the process interests us, and a brief discussion of

how vibration analysis may provide insight into one of the least understood steps.

2.1 The clathrin triskelion and endocytosis

To illustrate the steps involved in receptor-mediated-endocytosis, consider the part

of the brain that is responsible for motor functions, the striatum (basal ganglia).

Axons protruding from nerves in another region, the substantia nigra, extend into

the striatum and release the neurotransmitter dopamine when triggered by an action

potential. Although dopamine is actually produced in the body of the neurons in the

substantia nigra, they are carried to the nerve terminal by a complex inter-cellular

molecular transport system composed of vesicles. During dopamine release, these

vesicles fuse with the cell membrane and disgorge their contents of neurotransmitters

3
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Figure 2.1: The clathrin triskelion, shown here, has a diameter of approx-
imately 500 Å [1].

into the synapse. Dendrites from neurons on the other side of the synapse respond

to the increase in dopamine concentration by firing a new action potential, which

travels to the next neuron in the chain. Clathrin comes into play during the next

step of the process, nuerotransmitter reuptake.

Reuptake describes the process of recycling neurotransmitters. That is, after its

release, dopamine is sequestered back into vesicles in the axon of the neuron that

released it. In a healthy subject as much as 90 percent of the nuerotransmitters are

reused. When dopamine is released, the vesicle actually fuses with the membrane

and is absorbed into it. As a result, reuptake requires the reformation of these

vesicles from the cell’s outer membrane. This is precisely clathrin’s role. Attached

to the inside of the cell membrane, clathrin protein assemblies consist of a pinwheel

skeleton structure with three extended arms, a triskelion (See Figure 2.1). These

triskelions are composed of one heavy chain and one light chain tightly linked to

each other. The arms also have a certain degree of flexibility due to a joint which

separates it into two pieces. The first piece is about 170 Å, the second piece is

220 Å in length [2]. Large numbers of clathrin proteins assemble on the inner cell

membrane and their triskelion arms overlap to form polygonal lattices known as
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Figure 2.2: (a) Electron micrograph of a clathrin-coated pit ([9], p735).
(b) Diagram showing the interlocking triskelion structure of the pit [2].

clathrin-coated pits (See Figure 2.2).

These lattices vary in composition and curvature since the triskelions readily

bind in patterns that exhibit pentagonal, hexagonal, and a heptagonal symmetry.

In describing the subsequent steps in reuptake, we follow Jin and Nossal’s proposal

that, “...triskelion energetics and interactions, influenced by the physiological en-

vironment, cause coated pits to invaginate and to bud off near the center of flat

hexagonal lattices ([2] p1526).” This process begins when a small section of the

lattice (on the order of ten polygonal faces) extends into the cell membrane as new

triskelions are introduced. Because of their rigid geometry, the additional triske-

lions force the membrane to curve inward. Eventually, a “bud” is formed (See
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Figure 2.3). Note that this bud can grow into a variety of different sizes and shapes

depending on environmental conditions. One of the most common shapes, known

as the hexagonal barrel, has been studied extensively. Smith et al used cryo-electron

microscopy to generate a model of this structure with 21 Å resolution (See Figure

2.4). Throughout this process specific proteins, (dopamine in our case), bind to

assembly particles which in turn bind to points on the clathrin lattice. Thus, only

the proteins selected by these assembly particles will be concentrated within the

recently formed clathrin bud.

Next, the clathrin bud must “pinch” off from the cell membrane. This is the

least well understood step in the process. It is known that dynamin, a 900-amino-

acid protein, and GTP (guanosine 5-triphosphate) are required for the successful

separation of the vesicle [9] (See Figure 2.5). However, the exact mechanism involved

remains unknown. Once the clathrin bud has separated from the lattice (becoming

the so called “clathrin cage”), it depolymerizes via another protein interaction into

triskelions, which can be reused in the formation of other vesicles. Meanwhile the

newly formed, dopamine filled vesicle is ready to release its neurotransmitters again

with the next action potential.

2.2 The relevance of dopamine reuptake

For an example which demonstrates why the details of vesicular formation are sought

after, consider Parkinson’s disease. This neurodegenerative disease is characterized

by dramatically decreased dopamine in the striatum. Although it is known that the

number of neurons in the substantia nigra decrease as the disease progresses, and

that this reduction in dopamine producing neurons influences dopamine concentra-

tion in the striatum, it is widely thought that the disease is more complicated. For

instance, treatments exist which can artifically increase the quantity of dopamine in
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Figure 2.3: Diagram of steps involved in the formation of a free vesicle
with hexagonal barrel coat symmetry [2].
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Figure 2.4: Stereo image representation of the clathrin cage. Obtained by
cryo-electron microscopy and single-particle reconstruction [1].

Figure 2.5: Electron micrograph of a clathrin-coated pit in the absence of
GTP hydrolysis. Without GTP, the pit can form but cannot pinch off.
([9] p737).
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the striatum. However, experience shows that these treatments are associated with

a tolerance which increases with disease progression. Eventually the drug relieves

Parkinsonian symptoms only at the peak of its concentration in the brain. This

suggests that in addition to the slow death of substantia nigra cells, the brain’s

ability to efficiently recycle the remaining dopamine that it has (whether produced

naturally or artifically) decreases with the progression of the disease. This drop in

reuptake is indicative of a problem with vesicular formation.

2.3 Clathrin cage vibration

As mentioned earlier, clathrin bud separation requires GTP. This molecule, like its

more powerful analog ATP, provides energy for various biological processes. With

this functionality in mind, suppose the GTP energizes a vibrational mode of the

clathrin cage such that its amplitude of oscillation steadily increases. The work that

follows demonstrates the possibility that one such mode would involve the uniform

expansion and contraction of all the vertices, a so-called breathing mode. Using

this mode as an example, the increased amplitude of oscillation would eventually

cause a sufficient contraction of the vertices to pinch the bud off from the remainder

of the clathrin lattice. If the normal modes of clathrin can be identified, then

their frequencies could be searched for experimentally with appropriate spectroscopy

techniques.
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Chapter 3

Analytic Approach to Coupled
Oscillations

3.1 Introduction

The mathematics behind coupled oscillations unfolds in a concise and clear way

when the interaction between particles is harmonic. In this case there exist normal

modes of oscillation between which there is no coupling. This is to say that given

appropriate initial conditions, each particle in the system will oscillate at a single

frequency without exciting any other frequencies of oscillation. This fundamental

quality of harmonic motion allows the use of linear algebra to greatly simplify the

treatment of many-bodied systems.

The geometric shapes that will be considered in the following chapters are cou-

pled in a complex way. Consider the triangle: if two points are connected by a

spring, the force is determined by Hooke’s law and therefore the distance between

the two points. For systems which exist in multiple dimensions, the distance is

found using the Pythagorean theorem. This means that wiggling some vertex in the

x direction, for example, induces a force along the axis of the spring which depends

on the square root of both the x and y coordinates. As much as we would like it to
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be, this force is not linear.

However, If one chooses to consider only very small displacements from the

system’s equilibrium position, nonlinear components of the force can be ignored.

We approximate the true spring force with a Taylor expansion and ignore higher

order terms in the result, thus limiting the problem to small, harmonic vibrations.

In this regime a variety of elegant linear algebra tools are available. The following

section formulates this approach from the perspective of Lagrangian mechanics1.

3.2 The general approach

Begin by describing our system of N particles (for a total of 3N degrees of freedom)

by a set of generalized coordinates qk where k = 0, 1, . . . , N − 1. Consider the

equilibrium configuration where all the springs are relaxed at their rest length and

each particle is in its equilibrium position defined as qk0. Then because the particles

are stationary, we have

qk = qk0, q̇k = 0, q̈k = 0

We make the following claim regarding Lagrange’s equations of motion at equi-

librium:
∂L

∂qk

∣

∣

∣

∣

0

− d

dt

∂L

∂q̇k

∣

∣

∣

∣

0

=
∂L

∂qk

∣

∣

∣

∣

0

The time derivative of d
dt

∂L
∂q̇k

will always include q̇k or q̈k at equilibrium (denoted by

the subscript 0) so it drops out of the formula. From the definition of the Lagrangian,

L = T − V , we have
∂L

∂qk

∣

∣

∣

∣

0

=
∂T

∂qk

∣

∣

∣

∣

0

− ∂V

∂qk

∣

∣

∣

∣

0

= 0. (3.1)

1Derivation taken from Marion et al (See [10] p466-471). Goldstein (See [12] p243-246) and
Wilson et al (See [11] p11-33) provide alternative derivations.
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The coordinate transformations that relate the cartesian coordinates to the gen-

eralized coordinates are assumed to be time independent, which allows us to invoke

a definition of kinetic energy that depends only on the velocities of the generalized

coordinates.

T =
1

2

∑

j,k

Mjkq̇j q̇k (3.2)

So
∂T

∂qk

∣

∣

∣

∣

0

= 0

and from 3.1
∂V

∂qk

∣

∣

∣

∣

0

= 0 (3.3)

This result simplifies the following series expansion. It is also useful to let the

generalized coordinates qk be measured from the equilibrium position by setting

qk0 = 0. Next we Taylor expand the potential energy about this equilibrium position.

V = V0 +
n

∑

k=1

∂V

∂qk

∣

∣

∣

∣

0

qk +
1

2

n
∑

j,k

∂2V

∂qj∂qk

∣

∣

∣

∣

∣

0

qjqk + · · · (3.4)

From 3.3 we see that the second term vanishes, and we’re free to choose V0 =

0. Ignoring higher order terms in the expansion isolates the harmonic vibrations.

Therefore,

V =
1

2

n
∑

j,k

Hjkqjqk (3.5)

where we have introduced the Hessian matrix defined as

Hjk =
∂2V

∂qj∂qk

∣

∣

∣

∣

0

(3.6)

Defining our system in cartesian coordinates immediately diagonalizes the matrix

M in the kinetic energy,

T =
1

2

∑

j,k

Mjkq̇j q̇k =
1

2

∑

r

Mr q̇r
2
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which is simply the sum of the kinetic energy associated with each particle.

Because T is a function of the velocities only and V is a function of the coordi-

nates only, we can write the Lagrangian as

∂L

∂qk

− d

dt

∂L

∂q̇k

= 0 ⇒ ∂V

∂qk

− d

dt

∂T

∂q̇k

= 0

From 3.2 and 3.5 we compute the derivatives:

∂V

∂qk

=
∑

j

Hjkqj

∂T

∂q̇k

=
∑

j

Mjkq̇j

So the equations of motion are

∑

j

(Ajkqj + Mjkq̈j) = 0 (3.7)

This is a set of n second-order linear homogenous differential equations with constant

coefficients. We assume the solution for simple harmonic oscillation:

qj(t) = aje
i(ωt−φ)

Substituting this into the equations of motion yields

∑

j

(Hjk − ω2Mjk)aj = 0 (3.8)

This reduces the second-order linear differential equations down to linear algebraic

equations. Non-trivial solutions exist only when the determinant is equal to zero:

|Hjk − ω2Mjk| = 0 (3.9)

In matrix form this is
∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − ω2M11 H12 − ω2M12 H13 − ω2M13 . . .
H12 − ω2M12 H22 − ω2M22 H23 − ω2M23 . . .
H13 − ω2M13 H23 − ω2M23 H33 − ω2M33 . . .

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (3.10)
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Notice that both H and M are written symmetrically. This is because changing

the order of the indices reverses the order of the partial derivatives, and in general

the order of partial differentiation doesn’t matter.

The equation shown in 3.10 is commonly referred to as the characteristic equa-

tion. Its solution consists of n roots which can be called ω2
r . These are eigenvalues

of the characteristic equation. Choosing one of the roots, ωr, and substituting it

into the equations of motion (3.7) allows one to determine the vector aj . These

constants correspond to an eigenvector for that value of ωr. Together, this data

defines the general solution for one of the generalized coordinates, qj(t). Using the

principle of superposition to add all of the resulting normal modes yields a linear

combination of solutions which take the form

qj(t) =
∑

r

ajre
i(ωrt−φr) (3.11)

The real part of which is simply

qj(t) =
∑

r

ajr cos (ωrt − φr) (3.12)

3.3 Example: the triangle

One of the simplest, non-trivial systems that we can consider with this method is

the triangle. Applying the results of the previous discussion involves determining

the equilibrium configuration of the system, writing out the potential energy as a

function of the generalized coordinates, computing the Hessian (H) and its eigensys-

tem2, and then visualizing the motion. The equilibrium configuration is found using

2Rather than having to compute |H−ω2
M|, by setting M = 1 for all of our systems we simplify

the analysis to |H− ω2
I|, which is equivalent to computing the eigenvalues of H. By transforming

to the so called mass-weighted coordinates, we could retain the simple dependence on H while
letting M vary [11].
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geometry and the potential energy is found by inspection. All the other steps can

be easily accomplished using Mathematica. The Mathematica code for the triangle

appears in the appendix. Whenever possible I have used the same notation that

appears in the text3. We adopt a notation in which the equilibrium configuration of

the system is defined by R, and the displacement of each vertex from equilibrium

is given by r. Thus, in cartesian coordinates the position of a vertex at a time t is

given by

Ri + ri(t) = (xi(t), yi(t), zi(t)). (3.13)

3.3.1 Determining the potential energy function

The energy stored in a spring is found by integrating Hooke’s law. We define ∆r =

r − d, where r is the length of the spring and d is the equilibrium length.

V = −
∫

fhookedr = −
∫

−k∆rdr =

∫

krdr −
∫

kddr =
1

2
kr2 − kdr + C

but

V (r = d) = 0 =⇒ C =
1

2
kd2

which implies

V =
1

2
kr2 − kdr +

1

2
kd2 =

1

2
k(r − d)2. (3.14)

In order to implement this result, we must first define a function that calculates ∆r

in higher dimensional cases:

dr(ri, rj) = |(Ri + ri) − (Rj + rj)| − d. (3.15)

If the vertices of the triangle are labeled as in figure 3.1, then the energy stored in

the three springs is

V =
1

2
k

(

dr(r0, r1)
2 + dr(r1, r2)

2 + dr(r2, r0)
2
)

. (3.16)

3In Mathematica, elements of matrices and vectors are selected in a special way: xi → x[[i]].
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r0

r1 r2

r0

r1

r2

q(2i) q(2i+1)

0

0

0

-1/2

1/2

3/2

Figure 3.1: The coordinates for the triangle are defined in a counter-
clockwise direction and start with the zero index: q0, q1, q2, . . . q2N−1. This
makes certain aspects of the Mathematica code cleaner than if we started
the index at 1.

3.3.2 Computing H and its eigensystem

We compute the Hessian by evaluating the appropriate partial derivatives and sub-

stituting the equilibrium positions of the coordinates:4

H =
∂2V

∂qj∂qk

∣

∣

∣

∣

0

=

















0.5 0 −0.25 −0.433013 −0.25 0.433013
0 1.5 −0.433013 −0.75 0.433013 −0.75

−0.25 −0.433013 1.25 0.433013 −1. 0
−0.433013 −0.75 0.433013 0.75 0 0.
−0.25 0.433013 −1. 0 1.25 −0.433013

0.433013 −0.75 0 0. −0.433013 0.75

















(3.17)

Note that this matrix is symmetric as expected. Mathematica can compute the

eigenvalues and eigenvectors. The square root of the eigenvalues, (i.e. the normal

4The coordinates’ equilibrium positions are defined by R. The zero subscript refers to the
displacement vector (r), which by definition, must go to zero.
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frequencies), are shown here:

ω =

















1.73205
1.22474
1.22474

0
0
0

















(3.18)

Before visualizing these results, we immediately notice that three of the eigenvalues

are zero. The three zero-modes are expected for the following reason: our solution

does not restrict the motion of the particles in a translational or rotational way, and

it requires exactly two translational and one rotational directions to define all the

possible positions and orientations.

Because of the simplicity of this system, it is possible to show the eigenvectors,

ar, as the rows of the following matrix:

















0 0.57735 −0.5 −0.288675 0.5 −0.288675
−0.00405143 0.577336 0.502013 −0.285159 −0.497962 −0.292177

0.57735 0 −0.288675 −0.5 −0.288675 0.5
0.0083665 −0.372842 0.46961 −0.639141 0.46961 −0.106542
−0.816497 0 −0.204124 −0.353553 −0.204124 0.353553
−0.580283 −0.397816 −0.231964 −0.598918 −0.231964 −0.196714

















(3.19)

The last three rows are eigenvectors of zero-frequency modes, implying that they are

translational and rotational in nature. Any linear combination of horizontal trans-

lation, vertical translation, and rotation can be isolated by choosing the appropriate

scaling factors, α4, α5, and α6. Although it is not shown here, these scaling factors

can be easily found. Suppose one wants to find out which α represents translation
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in the positive x direction. We know that a matrix of the form

ax =

















1
0
1
0
1
0

















(3.20)

describes this motion. In this case, each horizontal displacement coordinate, (q0, q2,

and q4), translates with zero frequency, and each vertical displacement coordinate,

(q1, q3, and q5) is fixed. Therefore, scaling the magnitude of this matrix translates

the triangle to some new position on the x-axis. To show that the eigenvectors we

have solved for include this possibility, we solve the following equation:

α4a4 + α5a5 + α6a6 = ax (3.21)

This is a set of 6 simultaneous equations with 3 unknowns, and although it is not

shown here, the solution exists. The same argument holds for vertical translation

and rotation, and three-dimensional cases can be treated similarly.

One subtle aspect of the rotation should be elaborated. The machinery we have

developed looks at infinitesimal disturbances from equilibrium. Rotational motion

doesn’t disturb the potential for small or large disturbances from equilibrium, but

our techniques do not make that distinction. Consequently, scaling a rotational

mode accurately reflects small rotations, but distorts larger ones. Zero-modes are

discussed in more detail in Appendix A.

3.3.3 The general solution

The normal frequency, wr, and each element of the corresponding eigenvector, arj ,

define the angular frequency and the amplitude of the simple harmonic motion

executed by qj . In general, the motion is a linear combination of all possibilities.
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Although the true solution allows each mode to oscillate with its own, specific phase,

this analysis omits that possibility. We do include the necessary scaling factor, αr,

that determines the magnitude of the rth normal mode. From this and equation

3.12 we can write:

qj(t) =
∑

r

αrajr cos (ωrt) (3.22)

The motivation for choosing our index j to count from zero becomes apparent when

putting these results back in vector form:

rj(t) −→ (q(2j)(t), q(2j+1)(t)) (3.23)

The solution is now in a form that Mathematica can animate. Figure 3.2 shows a

series of snapshots taken at regular intervals after animating the vibrational modes

of the triangle. Figure 3.3 shows how the triangle moves when a zero-frequency mode

is selected, and instead of incrementing the time, t, we increment the amplitude of

the motion, αr.
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Vibrational Modes of the Triangle

ω1=1.73 rad/sec

ω2=1.22 rad/sec

ω3=1.22 rad/sec

Figure 3.2: The normal modes of a triangle with the vertices connected by
springs. Snapshots are taken at .2 second intervals and fade into black
at the final time T

2
= 2π

ωr
.
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ω6=0

Translational/Rotational Modes of the Triangle

ω5=0

ω4=0

Figure 3.3: Three of the triangle’s normal mode are zero. These correspond
to translational and rotational motion in which all of the springs remain
at equilibrium. By increasing the amplitude of α we can see how the
associated eigenvectors ar affect the triangle.



Chapter 4

Numerical Approach to Coupled
Oscillations

The analytical method introduced in the previous chapter has been successfully ap-

plied in a wide variety of applications. However, it is possible to understand the

motion of mass-spring systems more completely by pairing this mathematically rig-

orous analytical approach with a computational one. By incrementing the equations

of motion forward in time, the trajectory of a given system can be calculated know-

ing only the physical laws that govern it. This “brute force” method doesn’t require

the same mathematical restrictions occasionally needed in the analogous mathe-

matical treatment, and it can be easily modified to treat a wide variety of systems.

Although the numerical method does not illuminate fundamental behavior the same

way that algebraic solutions often do, the results can be probed using a number of

techniques and methods commonly found in traditional experimental physics.

For mass-spring systems, a physical analogy to the computational approach

would involve going into the laboratory and connecting a bunch of masses with

springs in the appropriate way, then plucking one of them and listening to the

object vibrate. Given the personal computing power available today, it is more

practical to construct and manipulate these objects within a digital framework.
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To accomplish this, it is necessary to introduce a general technique for trans-

forming equations of motion, like Newton’s 2nd law, into a form appropriate for

numerical integration algorithms1.

dy

dt
(t) = f(t,y) (4.1)

where y and f are N -dimensional vectors.

y =















y1(t)
y2(t)
y3(t)

...
yN(t)















, f =















f1(t,y)
f2(t,y)
f3(t,y)

...
fN(t,y)















(4.2)

Solving equation 4.1 amounts to solving the following N simultaneous first-order

ODE’s:

dy1

dt
(t) = f1(t,y),

dy2

dt
(t) = f2(t,y),

...
...

dyN

dt
(t) = fN (t,y).

When modeling physical systems, second-order differential equations are often

encountered. Newton’s second law, for example, takes the form

d2x

dt
=

1

m
F (t,

dx

dt
, x). (4.3)

This second-order ODE can be rewritten as two simultaneous first-order ODE’s by

defining a new variable, v, which is the first derivative of x:

dx

dt
(t) = v(t) (4.4)

1The following approach is taken from Landau et al (See [7] p122-128). Press et al (See [8]
p707-752) provide a more comprehensive discussion including a variety of C implementations.
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dv

dt
(t) =

1

m
F (t, v, x) (4.5)

In the form above, Newton’s equation of motion can be crunched by a variety of

integration algorithms. Note that, if our system contains N particles instead of

just one, equations 4.4 and 4.5 would become a set of 2N first-order equations.

The force function on the right hand side would then become a function of all the

possible interactions: F (t, v, x) → F (t, v1, v2, · · · , vN , x1, x2, · · · , xN ). Expressing

this in terms of the N element vectors x and v, we have

dx

dt
(t) = v(t) (4.6)

dv

dt
(t) =

1

m
F(t,x,v) (4.7)

The physical systems considered in the following chapters lie in three dimensions, so

the actual number of equations hidden in the sleek vector notation above increases

from 2N for a one-dimensional system to 3 × 2N = 6N for a three-dimensional

one. Once the differential equations are organized in this manner, the application

of various integration algorithms follows smoothly.

The simplest and most intuitive of these is Euler’s algorithm. It evaluates the

force function f(t,y) at the beginning of some time interval, t0, for which y(t0) is

known. Then it makes the crude assumption that this value, f(t0,y(t0)), remains

constant over the small time interval h. Thus the value of y at some future time is

simply y(t0 +h) ≈ y(t0)+hf(t0,y(t0)) (See figure 4.1). Because the implementation

of integration algorithms involves many iterations, it is common to write them in

terms of n, the number of time steps. Written this way Euler’s algorithm is

yn+1 = yn + hf(tn,yn) + O(h2) (4.8)

where it is important to note that the subscript refers to the number of time steps,

not specific components of the vectors. The large correction factor, O(h2), is one

reason why this method is rarely recommended.
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y(t)

t
t0 t1 t2

Figure 4.1: Euler’s method. The derivative at the starting point of each
interval is extrapolated to find the next function value. This method has
first-order accuracy [8].

The second-order Runge-Kutta, or the midpoint method, achieves greater accu-

racy by using a trial point in the middle of the interval to estimate the value of f

(See figure 4.2). The algorithm is

k1 = hf(tn,yn)

k2 = hf(tn +
1

2
h,yn +

1

2
k1)

yn+1 = yn + k2 + O(h3). (4.9)

The fourth-order Runge-Kutta algorithm (abbreviated as RK4 ) samples f at four

trial points within the interval (See figure 4.3). By cleverly choosing and combining

these samples, it achieves fourth-order accuracy (that is the correction factor is
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y(t)

t
t0 t1 t2

Figure 4.2: Midpoint method. Second-order accuracy is obtained by us-
ing the initial derivative at each step to find a point halfway across the
interval, then using the midpoint derivative across the full width of the
interval. Filled dots represent final function values. Open dots repre-
sent function values that are discarded once their derivatives have been
calculated and used [8].

O(h5)). The algorithm is

k1 = hf(tn,yn)

k2 = hf(tn +
1

2
h,yn +

1

2
k1)

k3 = hf(tn +
1

2
,yn +

1

2
k2)

k4 = hf(tn + h,yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5). (4.10)

Even though this algorithm requires four times as many calculations as Euler’s

method and twice as many calculations as the midpoint method, it will be used to

address our problem of mass-spring systems. The main motivation for this choice is

simple: the necessary processing power is available, so there is no need to exchange

accuracy for speed. This is partly due to the computationally favorable nature of
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y(t)

t
t0 t1

Figure 4.3: Fourth-order Runge-Kutta method. The derivative is evalu-
ated four times: once at the initial point, twice at trial midpoints, and
once at a trial endpoint. From these derivatives the final function value
(the filled dot) is calculated [8].

problems involving nearest-neighbor interactions, and also because the most com-

plicated system we consider, the clathrin cage, contains 36 vertices. Thanks to

the rapidly growing power of personal computers, the motion of these 36 coupled

point-masses can be integrated using the fourth-order Runge-Kutta method in a

reasonable amount of time.

4.1 Mass-spring implementation

Applying the techniques of the previous section to systems of coupled point-masses

is a straightforward exercise. In practice, it can be broken down into the steps

shown in figure 4.4. After defining the variables, the initial conditions, and the force

function, the RK4 algorithm computes the trajectory of each of the masses in time.

The result can be analyzed in a variety of different ways. In this discussion we focus

on visualization and Fourier transform techniques.
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define constants:

(h, d, k, tf) 

define inital 

conditions:

(r, v) 

define the 

force function:

F(r) 

r0
r1
r2
r3

rN

Analyze the motion

through visualization

and Fourier transforms
apply Runge-Kutta

n times

Figure 4.4: Schematic representation of the mass-spring simulation. The
actual Mathematica code appears the Appendix.

4.1.1 Defining constants and initial conditions

The notation used to implement the RK4 algorithm appears in the frontmatter and

is repeated here:

m −→ mass of each vertex
k −→ force constant of each spring
d −→ equilibrium length of each spring
h −→ integration time step
tf −→ target integration time

n −→ the number of steps made in the integration (n =
tf
h
)

N −→ the number of vertices in the system
r −→ vector of vertex positions (each entry takes the form (x, y, z))
v −→ vector of vertex velocities (each entry takes the form (vx, vy, vz))

We can freely select any appropriate value for k, d, tf , and m, but because this

exploration is based on a comparison between a variety of systems and approaches

it is in our best interest to keep them constant whenever possible. No effort will

be made to select values which correlate with real physical systems, although these
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types of considerations are appropriate for future work.

For simple objects like the triangle, the cube, and various polyhedra, the equi-

librium position of each of the vertices, R, can be computed using geometry. With

more complicated objects, the obvious example being the clathrin cage, R is not so

easily identified. We can capitalize on the fact that we are interested in equilibrium

configurations, however, by making a guess at the initial positions of the vertices

and letting the system relax to its lowest energy state. This is the method employed

to find clathrin’s vertices in chapter 7. Meanwhile, the velocity vector, v, is zero at

equilibrium.

4.1.2 Determining the force function

As discussed earlier, physical systems are governed by Newton’s 2nd law which we

can write in terms of two first-order differential equations:2

dr

dt
(t) = v(t) (4.11)

dv

dt
(t) =

1

m
F(t, r,v) =

1

m
F(r) (4.12)

From these equations it is clear that the force function of r is simply the value of v

at that time. The force function of v will be given by Hooke’s law which depends

only on r. In order to find F(r) we define the tension in the spring between the

vertices ri and rj as

T (ri, rj) = −k(|ri − rj| − d)
ri − rj

|ri − rj |
(4.13)

One can verify that this carries the correct sign by assuming the two vectors are

stretched beyond the equilibrium distance. If so, the first half of the equation,

2Here the vector of one-dimensional components, x, has been replaced by a vector of three-
dimensional components, r. This notation is slightly ambiguous because from now on v will also
be treated as a vector of three-dimensional components, even though its label remains unchanged.
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−k(|ri − rj| − d) carries a negative value. The second term,
ri−rj

|ri−rj |
, is a normal

vector pointing from rj to ri. Thus, the vertex at ri will be pulled toward the vertex

at rj , as expected.

The total force on any one vertex is simply the sum of the tensions acting on it

F (ri) =
∑

j

T (ri, rj) (4.14)

where j ranges over any vertices that are connected to ri. The force function then,

takes the vector of positions, r, applies F to each entry, and spits out a vector which

represents the total force on each vertex:

F(r) =











F (r1) =
∑

j T (r1, rj)

F (r2) =
∑

j T (r2, rj)
...

F (rN) =
∑

j T (rN , rj)











(4.15)

The previous two functions, T (ri, rj) and F(r) appear in the included mathematica

code as T[i][j] and F[r].

4.1.3 Implementing RK4

To integrate Newton’s second law and obtain the positions of the masses at some

future time, we enter the inital positions, the constants, and the force function into

the RK4 algorithm. Because we actually have 2 simultaneous sets of N differential

equations, one set that defines dr
dt

and one set that defines dv
dt

, it is necessary to
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rewrite equation 4.10 in the following way:3

k1 = h
1

m
F(rn)

j1 = hv

k2 = h
1

m
F(rn +

1

2
j1)

j2 = h(v +
1

2
k1)

k3 = h
1

m
F(rn +

1

2
j2)

j3 = h(v +
1

2
k2)

k4 = h
1

m
F(rn + j3)

j4 = h(v + k3)

vn+1 = vn +
k1

6
+

k2

3
+

k3

3
+

k4

6

rn+1 = rn +
j1
6

+
j2
3

+
j3
3

+
j4
6

(4.16)

As confusing as this set of equations first appears, it is easy to assign physical

meaning to each of the terms. For example, j1 is just the change in the position

vector over the interval h, assuming v holds its initial value. j2 is the change in

the position vector over the interval assuming v holds its estimated midpoint value.

The other j’s and k’s can be interpreted in a similar fashion. It is a testament

to the RK4 algorithm that appropriately combining these terms obtains such high

accuracy.

4.2 Example: the triangle

In order to illustrate several methods of interpreting the results of this algorithm

and to assess its accuracy, we consider a system whose solution was obtained in

3The subscripts on v and r refer to their values at different intervals of h, not specific components
of the vectors.
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the previous chapter: the triangle. First the specifics of setting up F are discussed.

Then a method of testing the algorithm’s accuracy will be introduced. Finally,

Fourier analysis is used to compare the classical and the computational approach.

4.2.1 Determining F(r) for the triangle

Determining the force function of each vertex in the triangle is easily done using the

function for tension, T (ri, rj).
4 If the vertices are labeled as before (See figure 3.1),

then

F(r) =





T (r0, r1) + T (r0, r2)
T (r1, r0) + T (r1, r2)
T (r2, r0) + T (r2, r1)



 (4.17)

With the force function known, we execute the RK4 algorithm to obtain the solution.

As the simulation runs, a series of values for r and v are generated corresponding to

the changing positions and velocities, respectively, of the triangle’s vertices in time.

It is useful to concatenate these values of r together in a list called rdata for future

analysis. Note that rdata is a nested list: each value of r within rdata contains a

set of (x, y) coordinates defining the position of each vertex. In order to pick out

specific components of this data, we introduce the relation

rdata(i) = r(t = h × i)) (4.18)

4.2.2 Checking energy conservation

The algorithm’s accuracy can be gauged by observing how the total energy of the

system changes in time. Because it is a closed system, we know that the sum of the

potential and the kinetic energy must remain constant. These two quantities can be

calculated from the model by noting that the potential can be written in terms of a

4You may have noticed that this equation is over-characterized; we haven’t taken advantage of
the fact that the tension on ri due to rj is just the opposite of the tension on rj due to ri. It
would be quite easy to define a function which deals with this in a more elegant way, but for the
level of complexity considered here there’s no need. We have the CPU cycles to spare.
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sum of spring tensions, and the kinetic energy can be calculated from the velocity

in the usual way. The energy stored in a single spring can be written:

V =
1

2
k∆r2 =

1

2k
T 2 (4.19)

So the potential energy at time t is

V (t) =
1

2k

∑

j

Tj(t)
2 (4.20)

where j varies over each of the springs. The kinetic energy is

K(t) =
1

2
m

∑

k

|vk(t)|2 (4.21)

where k varies over each of the vertices. After running the simulation and monitoring

this quantity, E = V (t) + K(t), we notice that the total energy is slowly draining

(See figure 4.5). To quantize how “bad” this is for our model, we can take advantage

of the one-way change in E to easily compute the fractional energy loss:

∆E

E
=

E(0) − E(tf )

E(0)

For typical values of h and n, about 0.3% of the initial energy is lost (See figure

4.5). It is difficult to predict how this will affect the computational model, but

small vibration comparisons with the analytic solution agree to high precision, which

suggests that the energy loss is acceptable.

4.2.3 Comparing the results

In order to compare the computational and analytical results, we use Fourier anal-

ysis to obtain the frequency spectrum of the computational result5. Mathematica

includes a built in Fourier transform function called Fourier which is ideal for our

5A detailed discussion of discrete Fourier transforms can be found in Landau et al (See [7]
p157-161).



4.2. EXAMPLE: THE TRIANGLE 35

n=tfêh

n=tfêh

Potential Energy

Kinetic Energy

∆E/E = .0037286

tf = 1000

h = .1

∆E/E in the Triangle

20 40 60 80 100

2∂10
-7

4∂10
-7

6∂10
-7

8∂10
-7

1∂10
-6

1.2∂10
-6

1.4∂10
-6

2000 4000 6000 8000 10000

1.495∂10
-6

1.496∂10
-6

1.497∂10
-6

1.498∂10
-6

1.499∂10
-6

Figure 4.5: When simulating the vibrating triangle with the fourth-order
Runge-Kutta algorithm, we see that conservation of energy is violated.
Looking at the fractional energy lost, ∆E/E, for typical values of the
variables allows us to gauge the accuracy of the algorithm.



36 CHAPTER 4. NUMERICAL APPROACH TO COUPLED OSCILLATIONS

purposes6. Before applying this function, we force the data to be periodic within

the interval n by multiplying it by an appropriate window function. This prevents

the discrete Fourier transform from trying to process data which is not truly pe-

riodic (except in the unlikely event that r(tf) and v(tf) exactly match the initial

conditions). The square of a sine function is used to obtain the windowed data:

wrdata(i) = rdata(i) × sin
(π

n
i
)2

(4.22)

where i ranges from 0 to n. In order to get as much information out of the data

as possible, we apply Fourier to the motion of each coordinate qi. The results

of these 2N discrete Fourier transforms (or 3N for a three-dimensional system)

are then summed together to obtain an accurate understanding of the triangle’s

frequency spectrum. The discrete Fourier transform of n data points produces n

new transformed data points. The magnitude of the ith element of the transformed

data determines the amount of the frequency ωi present in the original data, where

ωi = i
2π

nh
(4.23)

We use this equation to pair the results of Fourier with matching angular frequen-

cies. It is important to notice that this equation implies that our frequency resolution

will have a width of

ωi+1 − ωi =
2π

nh
=

2π

tf
. (4.24)

Therefore, increasing h and tf simultaneously will not increase frequency resolution.

We must pick a suitable value of h and then run the simulation long enough to

obtain the necessary resolution. In the following figures, tf = 1000, so we expect a

frequency resolution of ∼ .005 radians/second.

In order to use this method for comparison, we sample the analytic solution at

intervals of h and use its initial position, q0(0), q1(0), . . . q5(0), as the starting point

6This function actually calls an FFT algorithm.
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of our simulation7. If the Runge-Kutta algorithm works perfectly, the two Fourier

transforms will be identical for small displacements from equilibrium. Recall that

αr scales the magnitude of the vibrational mode ωr. Figure 4.6 shows the Fourier

transforms for the first two normal modes, and then a linear combination of them.

Because our analytical solution is for infinitesimal displacements from equilibrium,

the small values of α selected are suitable. We can also demonstrate that arbitrary

motion is truly a linear combination of motion at the normal frequencies. In figure

4.7 the initial value of r is randomly selected, but the resulting motion is still a

composite of two frequencies. Comforted with the knowledge that both solutions

agree and behave as expected, the next several chapters consider more interesting

structures including the tetrahedron, cube, and clathrin cage.

7Because we picked the general solution to be a sum of cosine terms, when t = 0 the triangle
will be maximally stretched and will have no velocity: q̇i(0) =

∑

(constant terms) × sin(0) = 0.
This means we can set the initial velocity of the computational solution to be zero in all cases.
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Figure 4.6: Comparison of the analytical and computational solutions to
the vibrating triangle. Two of the three vibrational modes are individu-
ally stimulated by stretching the triangle in the appropriate way. Then
both modes are stimulated simultaneously. Extremely small initial dis-
placements are used to make sure the system behaves harmonically
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Figure 4.7: Small displacements from the equilibrium position of r are
randomly selected. The numerical solution shows that the resulting mo-
tion is a linear combination of oscillations occurring at the two normal
frequencies.
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Chapter 5

The Vibrating Tetrahedron

Normal frequencies in the tetrahedron can be found using either of the two tech-

niques discussed previously. In order to understand the motion more completely,

we choose to apply both of them. The analytic solution provides us with the gen-

eral solution for small vibrations, but by examining the Fourier transform of the

computational solution we can explore some of its nonlinear qualities.

5.1 The analytic solution

Unlike the triangle, the tetrahedron is three-dimensional. This means that we have

3N = 12 degrees of freedom. We expect six of these to correspond with rotation

and translation (the tetrahedron can rotate around two more axes and translate in

one more direction than the triangle lying in a plane). It is easy to write out the

potential energy since every vertex is connected to every other vertex. There are six

terms in the potential energy, one for each spring. Figure 5.1 orients and labels our

tetrahedron.

V =
1

2
k

(

dr(r0, r1)
2 + dr(r0, r2)

2 + dr(r0, r3)
2 + dr(r1, r2)

2 + dr(r1, r3)
2 + dr(r2, r3)

2
)

.

(5.1)
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Figure 5.1: The tetrahedron.

Assuming the rest length of each spring is 1, geometry determines the equilibrium

positions of the vertices. Using this result we compute H using the familiar equation:

H =
∂2V

∂qj∂qk

∣

∣

∣

∣

0

=

0.5 0 0 −0.25 0.14 0.41 0 0 0 −0.25 −0.14 −0.41
0 0.5 0 0.14 −0.08 −0.24 0 −0.33 0.47 −0.14 −0.08 −0.24
0 0 2. 0.41 −0.24 −0.67 0 0.47 −0.67 −0.41 −0.24 −0.67

−0.25 0.14 0.41 1.5 −0.58 −0.41 −0.25 0.43 0 −1. 0 0
0.14 −0.08 −0.24 −0.58 0.83 0.24 0.43 −0.75 0 0 0 0
0.41 −0.24 −0.67 −0.41 0.24 0.67 0 0 0 0 0 0
0 0 0 −0.25 0.43 0 0.5 0 0 −0.25 −0.43 0
0 −0.33 0.47 0.43 −0.75 0 0 1.83 −0.47 −0.43 −0.75 0
0 0.47 −0.67 0 0 0 0 −0.47 0.67 0 0 0

−0.25 −0.14 −0.41 −1. 0 0 −0.25 −0.43 0 1.5 0.58 0.41
−0.14 −0.08 −0.24 0 0 0 −0.43 −0.75 0 0.58 0.83 0.24
−0.41 −0.24 −0.67 0 0 0 0 0 0 0.41 0.24 0.67

(5.2)
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where we have rounded each element of the matrix to the hundredths place. The

normal frequencies corresponding to this matrix are

ω =









































2
1.41421
1.41421
1.41421

1
1
0
0
0
0
0
0









































(5.3)

As expected, there are six zero-frequency modes. The corresponding eigenvectors

are not shown here, although they can be found in the Mathematica section of the

appendix. The general solution is formed by a linear combination of these modes:

qi(t) =
∑

r

αrair cos (ωrt) (5.4)

where i ranges from 0 to 11. We put in vector form with the equation

rj(t) −→ (q(3j)(t), q(3j+1)(t), q3j+2(t)) (5.5)

where j ranges from 0 to 4. Figure 5.2 attempts to illustrate how the tetrahedron

behaves when each normal mode is excited. Note that for the tetrahedron, the

so called ”breathing” mode (ω1) has the highest frequency. The triply degenerate

normal modes (ω2, ω3, and ω4) have slightly lower frequency. Each of these modes

exhibits quite different behavior. In ω2, two of the vertices stretch apart and then

collapse back in. In ω3, the top of the tetrahedron squashes down pushing the 3

vertices at the base out before bouncing back to its initial position. In ω4, one vertex

is pulled into the tetrahedron while another is pushed out followed by the reverse

process.
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5.2 The computational solution

Modeling the tetrahedron with our Runge-Kutta simulation requires only the force

function. We already know the equilibrium positions of the points, and we will use

the results of the analytical solutions to stimulate the desired modes. Since each

vertex experiences a force due to the spring tension between itself and every other

vertex, the force function is

F(r) =









T (r0, r1) + T (r0, r2) + T (r0, r3)
T (r1, r0) + T (r1, r2) + T (r1, r3)
T (r2, r0) + T (r2, r1) + T (r2, r3)
T (r3, r0) + T (r3, r1) + T (r3, r2)









(5.6)

where T (ri, rj) is defined by equation 4.13. Entering this into RK4 and picking α

such that an equal portion of each normal mode is present in the motion yields figure

5.3. Both solutions agree. Nonlinear qualities of the tetrahedron can be observed

by slowly increasing the amplitude of α (See figure 5.4). Notice that the originally

stimulated frequency, ω1 = 2 radians/second, decreases in magnitude relative to a

new frequency. This new frequency is consistent with ω5 and ω6 having a value

of 1 radian/second. Thus it is a demonstration of a nonlinear phenomenon known

as energy transfer. This example illustrates the computational method’s ability to

explore nonlinear ranges of motion, a subject that will return with our consideration

of the clathrin cage. In preparation of this task, however, we turn to a simple system

which exhibits semi-rigid characteristics: the cube.
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Figure 5.2: The normal modes of a tetrahedron with vertices connected by
springs. Snapshots are taken at .2 second intervals and fade in to black
at the final time T

2
= π

ωr
.
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Figure 5.3: All the normal modes in the tetrahedron are stimulated. The
analytic and computational solutions agree. Normal frequency degener-
acy increases the magnitude of the oscillation in the first two peaks.
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Figure 5.4: Nonlinearity in the tetrahedron can be seen by increasing the
amplitude of the vibrations. Rather than simply increasing the mag-
nitude of ω1, energy is transferred from the original frequency to the
degenerate ω5 and ω6 frequency. Although the scale chosen here does not
show it, there are probably higher frequency harmonics in this case as
well.
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Chapter 6

Semi-Rigid Systems

Vibrational analysis of the triangle and the tetrahedron demonstrate the equivalence

and accuracy of both solutions for systems at equilibrium. But what happens when

we apply these techniques to systems which do not have a well defined equilibrium

position? We will show that in this case the analytic solution can still provide

information about the vibrational modes, and in addition it can serve as a method

of assessing the rigidity of a system.

6.1 The square

One simple system which does not have a single equilibrium position is the square

with a spring along each edge. It is possible to deform this shape into a rhombus

without stretching any of its sides (See figure 6.1). Thus, the potential energy

remains at its minimum value for all values of r that define a rhombus with edges

of the same length as the original square. However, all other vertex configurations

do change the potential energy of the system. What happens when we compute the

eigenvectors and eigenvalues of H in this case?

The potential energy is just the sum over each spring,

V =
1

2
k(dr(r0, r1)

2 + dr(r1, r2)
2 + dr(r2, r3)

2 + dr(r3, r0)
2) (6.1)
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r0 r1

r2r3

Figure 6.1: A square can deform into a rhombus without stretching any of
its sides. In the vibrational treatment of the square, this characteristic
appears in the form of a new, zero-frequency mode.

and we have selected the equilibrium length of each side to be 1. We compute H:

H =
∂2V

∂qj∂qk

∣

∣

∣

∣

equilibrium

=

























1 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1
−1 0 1 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 1 0
0 −1 0 0 0 0 0 1

























. (6.2)

Taking the square root of the eigenvalues gives us the normal frequencies:

ω =

























0
0
0
0

1.41421
1.41421
1.41421
1.41421

























(6.3)
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Varying the Amplitude of Zero-Frequency Modes

ω1

ω3

α1 = 0 α1 = .05 α1 = .1 α1 = .15 α1 = .2 α1 = .5

α3 = 0 α3= .05 α3 = .1 α3 = .15 α3 = .2 α3 = .5

Figure 6.2: The general solution of vibration in the square is found by
computing H and looking at its eigenvectors and eigenvalues. The solu-
tion contains 4 modes in which the vertices translate with zero-frequency.
Visualizing these modes shows that they correspond with a deformation
of the square which does not stretch any springs for small displacements
from equilibrium. A linear combination of the two modes shown would
cause a translation in the y-direction.

and the eigenvectors are the rows of the following matrix:

























0 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 1
0 0 0 0 −1 0 1 0
0 0 0 −1 0 1 0 0
−1 0 1 0 0 0 0 0

























(6.4)

We generate the general solution in the usual way and choose appropriate values of

α to examine each normal mode. Notice that instead of finding 3 zero-frequency

modes, as we did in the triangle, there are 4. We increase the amplitude of several

of these modes and observe the result. (See figure 6.2). Although we do not show

all the zero-frequency modes, glancing at their associated eigenvectors reveals that

there are no obvious translational or rotational modes. However, it is easy to make
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the appropriate linear combinations of zero-frequency modes to describe translation

and rotation in this case (See figure 6.2).

These results can be interpreted by remembering that the analytic solution is

valid only for small displacements from equilibrium. Imagine taking the right edge of

the square and pulling it in the y-direction. Although you would clearly experience

a force when the right edge is pulled a good distance upwards, if you pull that edge

up only an infinitesimal amount, it is less obvious how and if the horizontal springs

would be stretched. Recalling that the Hessian matrix is merely the 2nd order term

in the Taylor expansion of the potential energy, we realize that if there is a restoring

force in this infinitesimal displacement, it must appear in the Taylor expansion as

a 3rd order term or higher.

One ramification of this insight can be seen by modifying the previous example.

Instead of holding the right edge and pulling it upwards, imagine pulling the top-

right vertex up while pulling the bottom-right vertex down. If the previous analysis

is correct, the only force either of these vertices experience would be due to the ten-

sion of the spring connecting them. Looking back at ω and visualizing the solution

shows that this is indeed true. The frequency we expect for two masses connected

by a spring is easily found from Newtons 2nd law without using the machinery we

have developed thus far. The tension in the spring is given by Hooke’s law:

T = −k(x − x1)

Because the center of mass must not move, we have

x1 = −x
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Vibration in the square

Figure 6.3: The general solution of vibration in the square is found by com-
puting H and looking at its eigenvectors and eigenvalues. The solution
contains 4 vibrational modes in which each set of two vertices oscillate
along their shared edge.

so

T = −2kx

ẍ =
T

m
= −2k

m
x

=⇒ ω =

√

2k

m
(6.5)

where x1 and x measure the displacement of each point from equilibrium along the

axis of the spring connecting them. In our simulations, we have set

k → 1

m → 1

=⇒ ω =
√

2 = 1.41421 (6.6)

This is exactly the frequency of the four vibrational modes we found in the square.

A quick look at the eigenvectors shows that each mode corresponds to oscillation

between two vertices which share an edge. This is illustrated in figure 6.3.

So, applying the analytic solution to a system that is not at a well defined

equilibrium is still quite revealing. It has informed us what vibrational modes can
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exist in the structure, and considering the zero-frequency modes reveal the ways it

can deform without experiencing 2nd order forces. Recall that for a rigid, nonlinear

system in three-dimensions we expect the number of zero-frequency modes to be

six (three corresponding to translation, and three corresponding to rotation). Our

consideration of the square suggests that its worthwhile to introduce a new variable,

η, which describes the rigidity of a system, where η = 0 implies a completely rigid

system, and increasing values of η indicate a less stable structure. If we define ζ to

be the total number of zero-frequency modes and f to be the expected number of

translational and vibrational modes1, then we propose a new equation:

η = ζ − f (6.7)

Or in words, the rigidity of the system is related to the number of zero-frequency

modes minus the expected translational and rotational modes. To see if this equation

effectively describes the rigidity of a system, we apply it to a cube.

6.2 The cross-braced cube

Previously, we saw that the square has four vibrational modes and four zero-frequency

modes. To test equation 6.7, consider a similar but more complicated system: the

cube. We can immediately make some conjectures about the expected solution.

As the square example illustrates, moving the endpoint of a spring along a path

perpendicular to the direction of the spring does not cause a 2nd order restoring

force. Thus, in the cube it seems reasonable to expect at least 8 normal modes

corresponding to the vibration of each edge. The goal is to start with this system

and then add additional springs between vertices not normally connected. As we do

this, we watch the rigidity index, η.

1In general, this would be 6 for nonlinear systems, 5 for linear ones, or for two-dimensional
cases like the triangle and the square, 3.
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Figure 6.4: Labeling the cube vertices.

6.2.1 Determining the potential

The potential of a cube is easy to define with the help of figure 6.4. Since we will

be adding springs to the system which vary in equilibrium length, it is important

to include the appropriate rest length in each term of the potential energy. The

function that determines the displacement of each spring is

dr(ri, rj) = |ri − rj| − d. (6.8)

As usual, we set each edge to be of length 1. Geometry shows that for diagonal

springs that cross through the center of the cube, d =
√

3, while for diagonal springs

that lie on a face, d =
√

2. Rather than writing out the various potential functions

here, the reader is referred to the Mathematica code in the appendix. The following

values of ω are calculated by adding the energy terms from cross-bracing springs

to the cube’s potential function. In order to present the results more elegantly, we

will use a series of figures which graphically show the included springs along with

the system’s normal frequencies and the index of rigidity, η (See figures 6.5 and

6.6). Notice that, as we expected, the unbraced cube has exactly 8 identical, non-

zero, vibrational modes. The corresponding frequency is identical to that of two
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Figure 6.5: Top: the unbraced cube with normal frequencies and the index
of rigidity: η = zero-frequencies − 6. Bottom left: adding one diagonal
spring across each face reduces η to zero. Bottom right: Adding more
springs, one between every pair of vertices, changes the normal frequen-
cies but does not alter the number of zero-frequency modes.
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Figure 6.6: Adding diagonal springs to the cube affects the index of rigidity,
η, in a methodical way.
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masses connected by a single spring. So like the square, transverse restoring forces

must be 2nd order or higher. Furthermore, the index of rigidity behaves in a useful

and intuitively correct way. By trying various spring combinations and using the

normal mode analysis we are able to quickly and easily determine which shapes are

rigid, and which exhibit various degrees of floppiness. These results call for a more

rigorous mathematical approach which will be touched upon in Appendix A. For

now the focus remains vibration in the clathrin cage. The close look we have taken

at semi-rigid systems will be vital in interpreting results obtained in the following

chapter.



Chapter 7

Normal Modes of the Clathrin
Cage

Recall that the clathrin cage is a large hexagonal barrel shape with rigid triskelions

on each vertex. In order to use the machinery introduced in the previous chapters,

we must simplify this complex biological protein into a set of point masses coupled

by springs. It is hoped that as extreme as this simplification is, the results of a

normal mode analysis will still yield useful results.

Applying the analytic and computational methods to this system is a test in

patience and care, but the specifics of both approaches remain unchanged. Struc-

turally, the clathrin cage has 36 vertices and is composed of 12 pentagons and 8

hexagons for a total of twenty faces. This means that we expect 3N = 108 normal

modes. In the analytic solution, the potential energy includes one term for every

spring which works out to 54 terms. The Hessian matrix will have the dimensions

108× 108. This means that each eigenvector will also have 108 elements, and there

will be 108 eigenvalues. Meanwhile, the computational solution requires the deriva-

tion of 36 equations which describe the force each vertex experiences (i.e. a 36

component force function). Due to the large size of these quantities, the reader is

referred to the Mathematica code to see how they are generated.
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7.1 Finding the equilibrium position

Unlike the previous cases, the equilibrium configuration of clathrin is not trivial,

and its computation relies on a modification of the numerical methods previously

discussed. We conjecture that since each vertex represents a triskelion in the physical

system, the equilibrium distance between neighboring vertices must remain the same

across the cage. From electron micrographs, we know how the various triskelions

interconnect in the specific case we have chosen. These two facts motivate the use

of our computational model to determine the minimum energy of the system. If we

make a reasonable guess at the equilibrium position of each vertex and include a

damping term in the force function, then running the simulation will relax the cage

down to a configuration in which all the springs assume their rest length. Modifying

the force function with a velocity dependent damping term yields:

F (r,v) =











F (r1) =
∑

j T (r1, rj) − γv1

F (r2) =
∑

j T (r2, rj) − γv2

...
F (rN) =

∑

j T (rN , rj) − γvN











(7.1)

where j ranges over the connected vertices, and γ is the damping coeffecient.

We estimate the position of each particle by assuming that every vertex lies on

a set of rings oriented in the x-y plane (See figure 7.1). Spherical coordinates are

used to select 6 evenly spaced points on each ring. By varying each rings scale,

rotation, and position along the z axis, we assemble a set of coordinates which

roughly matches the symmetry of the true cage. Labeling these points in a careful

way, (See figure 7.2), makes computing the force function a straightforward, though

tedious, process. With these quantities known, we run the simulation and observe

the clathrin cage settling to an equilibrium configuration (See figure 7.3). Note that

we have chosen the usual rest length for each spring: d = 1. Our efforts result in

table 7.1. With the equilibrium configuration of clathrin known, we can proceed
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z

y

x

Figure 7.1: We take a rough guess at the clathrin’s equilibrium configura-
tion by assuming the vertices lie on a set of rings oriented in the x-y plane.
The bold lines show where the springs will connect in our simulation.

with the usual analytic and computational methods.

7.2 Analytic results

Using the previous result, we compute the potential energy and the resulting Hessian

matrix. Computing the normal frequencies reveals a surprise: there are exactly 54

vibrational modes and 54 zero-frequency modes in the clathrin cage (See table 7.2).

Applying the formula for the index of rigidity here

η = (zero-frequency modes) − 6 = 48. (7.2)

If this equation is at all indicative of the flexibility of a structure, then it appears

our mass-spring model of the clathrin cage is far too great a simplification. What

are we to make of the non-zero normal frequencies in light of this? We turn to the

computational model for further insight.
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Figure 7.2: These diagrams demonstrate how the clathrin vertices are con-
nected by springs, and is used in the construction of the force function.
Each number represents the index, j, of the vector rj.
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Figure 7.3: Taking a guess at clathrin’s equilibrium position and including
a damping term in its force function allows us to minimize the potential
energy and find the true equilibrium position numerically. The plot shows
values for a few qi as they equilibriate.
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-0.5 0.866025 1.76901
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-0.809845 1.40269 0.984161

-1.61969 0 0.984161
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-0.5 0.866025 -1.76901
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R@8D
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R@23D
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R@28D

R@29D

R@30D
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R@32D

R@33D

R@34D

R@35D

x y z

Table 7.1: The equilibrium configuration of clathrin is found by including
a damping term in the computational model and letting the system relax
to its minimum energy. The various vectors, R[i], correspond with figure
7.2
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Clathrin Normal Modes

Analytic Solution

Table 7.2: Analytically computing the normal modes in a mass-spring
model of the clathrin cage reveals 54 vibrational modes and 54 zero-
frequency modes.

7.3 Computational results

The classical result provides a general solution for each qi which, as usual, defines the

simulation’s initial conditions. It is possible to visualize either solution after stimu-

lating any linear combination of the normal modes by adjusting the 108 component

vector, α. Observing the two solutions provides information to help interpret the 54

zero-frequency modes. For very small oscillations, α < .01, the Fourier transforms

of both solutions are nearly identical (See figure 7.4). Therefore we conclude that

the non-zero modes obtained from H are experimentally confirmed to exist in the

structure. However, increasing the amplitude of α does not preserve these stable os-

cillations. Instead of showing harmonic oscillation that is modified by the presence

of nonlinear terms, as observed in the tetrahedron, larger amplitude vibrations do

not preserve the geometry of the structure (See figure 7.5). Apparently the classical
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Figure 7.4: For very small oscillations, the analytic and numerical models
agree. In these spectra, the 54 non-zero normal modes are equally excited
with an amplitude .01% of the equilibrium distance.
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Numerical solution for larger amplitudes

α1-54=.01 h=.1 tf=1000 n=10000

Figure 7.5: Rather than simply introducing nonlinearities, increasing the
amplitude of oscillation to 1% of each spring’s rest length causes a com-
plete destruction of the structure’s symmetry.

result is valid, but only for extremely small displacements from equilibrium. This

suggests that η does assess, to some degree, the rigidity of a system. It is diffi-

cult to predict from the classical results alone how to interpret the 54 vibrational

solutions. However, the numerical results are able to identify a regime in which

the harmonic approximation holds. Increasing the amplitude to within 1% of each

spring’s rest length reveals that this harmonic approximation is not valid for the

range of vibration we would like to consider. Thus our hypothesis that large am-

plitude oscillation plays a role in vesicular separation remains unanswered by this

analysis. It seems that a mass-spring model of the clathrin cage ignores too many

details of its structure. Future work may make the appropriate changes, such as the

addition of torsion springs, to model the behavior more realistically.
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Chapter 8

Conclusion

Although the normal modes of the clathrin cage were not definitively determined,

the utility of both the classical and the numerical approach have been verified.

What at first appeared to be anomolous factors of zero in ω have been shown to be

an artifact of the unstable equilibrium that clathrin assumes when approximating

rigid triskelions with point masses. Furthermore, this unexpected application of

the analytic method may prove useful in assessing the rigidity of a system. One

could further explore this possibility by combining both approaches and revisiting

a simple structure like the cube. Chapter 6 illustrates the relationship between

the index of rigidity, η, and the number of cross-bracing springs in place, but the

next logical step has not yet been pursued. With the proven RK4 algorithm in

place, we are already in a position where, by applying various loads to the cube,

we could numerically compute its response. This would provide an experimental

foundation for the intuitive notion that “more springs make a more rigid structure.”

As much as the example of the cube demands more examination from a numerical

standpoint, it also demands more from a mathematical one. We know that a large

number of zero-frequency modes are caused by a lack of rigidity in the system.

More precisely, the 2nd order terms that we retain from the Taylor expansion do

not constrain the geometry of the object. Although it was not explored in earlier
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chapters, varying the amplitude, α, of these zero-frequency modes provides insight

into how the shape may be prone to deform. In the case of the clathrin cage,

visualizing several of these deformation modes shows that the top and bottom of

the clathrin cage can be pulled apart while the sides collapse in. This technique

is hampered, however, by the fact that the zero-modes are a linear combination of

translations, rotations, and deformations. A more useful approach would eliminate

the translation and rotation modes before applying the vibrational analysis. This

technique is discussed in Appendix A. A rigorous mathematical approach using these

principles and focusing on semi-rigid systems could be of great benefit to the study

of static systems. If the translational and rotational components are completely

decoupled from the system prior to the normal mode analysis, then all the resulting

zero-modes would have to be a linear combination of only deformations.

In addition to these untried approaches, the experimental data strongly hints

at a fundamental relationship between the number of springs included in a system

and the expected number of zero-frequency modes. Looking back at the cube and

the clathrin cage, one notices that the zero-frequency modes correspond exactly

with the number of degrees of freedom minus the number of included springs. Our

model of clathrin contains 54 springs and has 108 degrees of freedom. It also has

54 zero-frequency modes. The same pattern is demonstrated by the cube model.

The mathematical and experimental excursion necessary to answer this question is

beyond the scope of the present work, but it cannot be ignored.

Other questions inspired by these results deal more directly with the originally

posed problem of vesicular separation. For example, do all of the geometric varia-

tions assumed by clathrin exhibit semi-rigid behavior when modeled as point masses,

and if so, do these semi-rigid characteristics play a role in vesicular separation? If

the rigid geometry of the triskelions themselves are required for a stable structure,

could the pinching off mechanism involve a relaxation of their torsional rigidity?
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Although these new questions have been introduced, the original supposition that

normal mode vibration plays a role in vesicular separation remains open to explo-

ration. The machinery set forth in this text could be modified to include a torsional

spring at each vertex. Research done on the triskelions themselves suggest that it

may even be possible to obtain an experimental estimate of these torsional spring

constants [3]. Coupling this with realistic estimates for the linear spring coefficients,

the triskelion arm “rest length,” and an estimate of their mass would produce results

which could be experimentally tested.

The work that has been accomplished is engaging for the questions it introduces

as well as those it helps answer. The most obvious resolution reached is simply

that mathematical rigor and numerical accuracy are both appropriate for the anal-

ysis of complex, many-body problems. Undoubtably, pursuing these techniques to

their logical conclusion will provide answers to the unexpected phenomena we have

observed.
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Appendix A:
Algebraic Considerations

In order to make the previous analysis of semi-rigid systems more rigorous, we

would like to isolate those modes which correspond with deformations. Although

it was not done previously, this is accomplished by using the appropriate equations

of constraint to eliminate the translational and rotational modes of motion prior to

the normal mode analysis. Wilson et al (see [11] p273-279) derive the appropriate

equations of constraint to accomplish this. Three of these constrain the center of

mass, and three constrain the rotation of the system. If mj is the mass of each vertex,

Rj the equilibrium position of each vertex, and rj the generalized displacement of

each vertex, these equations of constraint take the form

N−1
∑

j=0

mjrj = 0 (1)

and
N−1
∑

j=0

mjRj × rj = 0 (2)

where × denotes the cross product of the terms. Each of the above equations is

actually 3 simultaneous equations, one for each dimension, so they can be used to

eliminate 6 of the generalized coordinates. All zero-modes in the subsequent analysis

would correspond with deformations of the structure, and furthermore these modes

could be visualized as their magnitude, α, is adjusted. The resulting motion would
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be decoupled from any translational or rotational modes, making their interpretation

simpler and more revealing.

Another consequence of this is that the resulting Hessian, H will reflect the

reduction in 6 of the generalized coordinates by having dimensions (3N − 6) ×
(3N − 6). Recall that from Chapter 2, the equations of motion can be written in

matrix form as

Ha − ω2
Ma = 0. (3)

We simplified this by letting the mass of each particle be 1, so that M → I, the

identity matrix. Alternatively, we could accomplish this by varying the individual

masses and choosing a mass-weighted coordinate system (See [11] p14). Rewriting

equation 3 in light of this, we have the familiar eigenvalue equation

Ha = ω2a. (4)

For zero-frequency modes, (ω → 0), this becomes

Ha = 0. (5)

By definition, the vectors a which solve this equation span the null space of H, and

the number of independent solutions correspond with the number of zero-frequency

modes. Therefore, the rigidity of a system, η, is the dimension of the null space of

H after eliminating the translational and rotational modes using the above method.

This provides one possible starting point for a more mathematically rigorous treat-

ment of the deformation modes.



Appendix B:
The Mathematica Code
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